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Terabyte-scale supervised 3D 
training and benchmarking  
dataset of the mouse kidney
Willy Kuo   1,2,4, Diego Rossinelli1,2,4, Georg Schulz3, Roland H. Wenger1,2, Simone Hieber3, 
Bert Müller   3,5 & Vartan Kurtcuoglu   1,2,5 ✉

The performance of machine learning algorithms, when used for segmenting 3D biomedical images, 
does not reach the level expected based on results achieved with 2D photos. This may be explained by 
the comparative lack of high-volume, high-quality training datasets, which require state-of-the-art 
imaging facilities, domain experts for annotation and large computational and personal resources. 
The HR-Kidney dataset presented in this work bridges this gap by providing 1.7 TB of artefact-
corrected synchrotron radiation-based X-ray phase-contrast microtomography images of whole 
mouse kidneys and validated segmentations of 33 729 glomeruli, which corresponds to a one to two 
orders of magnitude increase over currently available biomedical datasets. The image sets also contain 
the underlying raw data, threshold- and morphology-based semi-automatic segmentations of renal 
vasculature and uriniferous tubules, as well as true 3D manual annotations. We therewith provide a 
broad basis for the scientific community to build upon and expand in the fields of image processing, 
data augmentation and machine learning, in particular unsupervised and semi-supervised learning 
investigations, as well as transfer learning and generative adversarial networks.

Background & Summary
Supervised learning has been the main source of progress in the field of artificial intelligence/machine learn-
ing in the past decade1. Impressive results have been obtained in the classification of two-dimensional (2D) 
color images, such as consumer photos or histological sections. Supervised learning requires high-volume, 
high-quality training datasets. The use of training data that do not fulfill these requirements may severely ham-
per performance: low-volume training data may result in poor classification of samples reasonably distant from 
any sample in the training set due to possible overfitting of the respective algorithm. Low quality may result in 
the algorithms learning the ‘wrong lessons’, as the algorithms typically do not include prior knowledge on which 
aspects of the images constitute artefacts. It is thus not surprising that the most used benchmarks in the field are 
based on large datasets of tiny 2D images, such as CIFAR2, ImageNet3 and MNIST4.

In contrast to the semantic segmentation of 2D photos, shape detection within three-dimensional (3D) bio-
medical datasets arguably poses fewer technical challenges to machine learning. After all, 2D photos typically 
contain multiple color channels, represent the projection of a 3D object on a 2D plane, feature occlusions, are 
often poorly quantized and contain artefacts such as under- or overexposure and optical aberrations. Despite 
this, machine learning approaches have not reached the same performance in the analysis of 3D biomedical 
images as would be expected by their results achieved in 2D photos.

This discrepancy may be explained by the lack of sufficiently large-volume, high-quality training datasets, 
especially in the area of pre-clinical biomedical research data. The workload for manual annotation becomes 
excessive when a third dimension has to be considered. Also, domain experts capable of annotating biomedical 
data are in short supply compared to untrained personnel annotating recreational 2D photos5,6. To reduce work-
load, 3D datasets are typically annotated only on a limited number of 2D slices7. This sparse annotation approach 
may, however, hamper machine learning, as the volume of training data may be insufficient to avoid overfitting.  
While this is in principle enough to train 3D segmentation models, the precise location of the 2D slices within 
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the 3D grayscale signal has to be explicitly taken into consideration, possibly hampering straightforward train-
ing. Performance of supervised learning in the pre-clinical biomedical field may have reached a plateau, with 
potential improvements being held back by the lack of suitable training datasets, rather than by the intrinsic 
power of the underlying algorithms.

An example to demonstrate this issue can be found in a study by Pinto et al.8 who showed that a simple 
V1-like model was able to outperform state-of-the-art object recognition systems of the time, because the 
Caltech101 dataset9 used for benchmarking was inadequate for leveraging the advantages of the more advanced 
algorithms. The simple model’s performance rapidly degraded for other images not included in the dataset, 
which confirmed that the limited variation in the benchmarking dataset was responsible for the observed per-
formance ceiling. Had more varied datasets been used for benchmarking, the simple model would not have been 
able to outperform the state-of-the-art models and a larger performance gap would have been apparent.

Currently available large datasets, for example those published on grand-challenge.org, are based predomi-
nantly on clinical data. The major challenges for machine learning algorithms with this type of data are linked 
to widely varying intensity values, low signal-to-noise ratios, low resolution, and the presence of artefacts.  
These are, however, not the only challenges encountered in image processing, and they do not necessarily apply 
to other types of biomedical data. In pre-clinical imaging, continuous improvements of spatial resolution and 
acquisition speeds have led to ever larger data volumes, and with those to a proportional increase in human 
labor required for manual or semi-automatic segmentation. Machine learning algorithms have the potential 
to substantially reduce the amount of human labor needed, provided that they can work with low amounts of 
training data, where the annotation workload does not exceed the workload required for classical segmentation. 
Algorithms that perform well in such a low-data regime may greatly accelerate biomedical research, but promis-
ing candidates may be overlooked because of the current focus on clinical segmentation challenges.

In this work, we present HR-Kidney, a high-resolution kidney dataset. It is, to our knowledge, the largest 
supervised, fully 3D training dataset of biomedical research images to date, containing 3D images of 33 729 
renal glomeruli, viewed and validated by a domain expert. HR-Kidney is based on terabyte-scale synchrotron 
radiation-based X-ray phase-contrast microtomography (SRµCT) acquisitions of three whole mouse kidneys at 
micrometer resolution. These training data, along with fully manually annotated 3D regions of interest, are avail-
able for download at the Image Data Resource (IDR, https://idr.openmicroscopy.org/)10 repository. Underlying 
raw data in the form of X-ray radiographs and reconstructed 3D volumes are supplied as well, as are reference 
segmentations of the vascular and tubular vessel trees.

Databases of photographs such as CIFAR2 and ImageNet3 are currently the principle sources of data for 
testing and benchmarking machine learning algorithms, which can be attributed to the very high volume of 
annotation data available. As a result, these databases feature a high performance ceiling for benchmarking. 
However, the workload for creating these datasets is tremendous. For example, annotations for the ImageNet 
database were carried out over the period of three years by a labor force of 49 000 people hired via Amazon 
Mechanical Turk3.

Biomedical databases cannot be created by similar use of crowdsourced, untrained personnel, as annotations 
require domain expertise to avoid misclassification caused by a lack of familiarity with the different classes. 
Furthermore, quantitative assessment of biomedical markers such as blood vessel density requires segmentation 
rather than classification, which takes considerably more time to complete. This is exemplified by the PASCAL 
VOC dataset11, which contains four times less segmentations than classifications. Due to these additional chal-
lenges, data volumes in biomedical databases lag behind those of photographic databases. With HR-Kidney, 
we are providing 1701 GB of artefact-corrected image data and 33 729 segmented glomeruli, which represent a 
one to two orders of magnitude increase over currently available biomedical 3D databases12–16, reaching a data 
volume comparable to the photographic datasets popular for machine learning benchmarks.

This substantial increase in size compared to the state-of-the-art may enable disruptive developments in 
machine learning, as most research groups in the field do not have the combination of sample preparation exper-
tise, access to synchrotron radiation facilities, high performance computing resources and domain knowledge to 
create training datasets at this scale and quality.

Terabyte-scale X-ray microtomography images of the renal vascular network.  We acquired 
SRµCT images of whole mouse kidneys with 1.6 µm voxel size, ensuring sufficient sampling of functional capillar-
ies, the smallest of which are 4 µm in diameter17. High image quality in terms of signal-to-noise ratio was achieved 
by employing the ID19 micro tomography beamline of the European Synchrotron Radiation Facility (ESRF), 
which provides several orders of magnitude higher brightness than conventional laboratory source microto-
mography devices. This allows for propagation-based phase contrast imaging, which leverages sample refractive 
index-dependent edge-enhancement for improved contrast18. Fig. 1 provides an overview of the data acquisition 
and processing pipeline. Therein, the raw SRµCT radiographs are marked as D1.

Vascular signal-to-noise ratio was further improved by the application of a custom-developed mixture of 
contrast agent in a vascular casting resin capable of entering the smallest capillaries and filling the entire vascu-
lar bed. There was sufficient contrast to extract an initial blood vessel segment using curvelet-based denoising 
and hard thresholding. Connectivity analysis ensured and confirmed that the blood vessel segment, including 
capillary bed, was fully connected. Microscopic gas bubbles caused by external perfusion of the kidney, which is 
part of the organ preparation procedure, were excluded from the image set by applying connected component 
analysis to the background. This allowed for the elimination of all gas bubbles not in contact with the vessel 
boundary (D5 in Fig. 1).

The contrast agent, 1,3-diiodobenzene, also diffused into the lipophilic white adipose tissue, resulting in high 
X-ray absorption in the perirenal fat, which is, therefore, included in the vascular segment (Fig. 2a). To visualize 
the segment without fat, a machine learning approach based on invariant scattering convolution networks19 was 
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applied, removing most of the blob-shaped fat globules and the more dense fatty tissue surrounding the collect-
ing duct (D5b). Using the resulting segment, vessel thickness was calculated according to the concept of largest 
inscribed sphere (Fig. 2b,d).

Post-processed dataset and reference segmentations.  Ring artefacts compromise segmentation, as 
the corresponding areas may be erroneously attributed to the blood vessel or tubule segments, depending on their 
intensity (Fig. 3a). To avoid this, kidneys were scanned with overlapping height steps, and the overlapping regions 
of the neighboring height steps were employed to produce a post-processed 3D volume with greatly reduced ring 
artefacts (D3 in Fig. 1), on which blood vessel and tubular segmentations were performed. Connectivity analysis 
yielded the fully connected tree of the blood vessel segment (D5). Insufficient contrast and resolution within the 
inner medulla prevented similar connectivity analysis on the tubular segment (D6).

High quality annotations of glomeruli in full 3D.  Glomeruli are the primary filtration units of the 
kidney. They feature characteristic ball-shaped vascular structures. As they present with the same gray values and 
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D2 Reconstructed 3D volume D1 Raw X-ray radiographs D3 Post-processed 3D volume 

D6 Tubule segment D5 Blood vessel segment D4 Manual training dataset 

D7 Visualization D8 Supervised training dataset 

Fig. 1  Overview of the data made available in the repository. (a) Grayscale data: X-ray radiographs (D1) 
were reconstructed into 3D volumes (D2) and post-processed for ring artefact removal (D3). (b) Classical 
segmentations: Glomeruli were manually contoured in small regions of interests (D4). Blood vessels (D5) and 
tubules (D6) were segmented by noise removal, thresholding and connectivity analysis. (c) Machine learning 
segmentations: Glomeruli identified via machine learning were combined with the blood vessel segment for 
visualization (D7), which was viewed by a domain expert to validate the final glomerulus mask (D8). A list of 
dataset contents and file formats is provided in Table 1.
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vessel diameters as other blood vessels in the kidney, differ only in their morphology, possess diverse sizes and 
shapes and are present in large, discrete numbers in the kidney, they pose a difficult segmentation challenge with 
a large sample size.

When contouring features of interest in 3D, however, the required workload is multiplied by the number of 
slices in the third dimension. In our work, this corresponds to a factor of 256 for a region of interest and 7168 for 
an entire kidney. Due to this extremely high contouring workload, 3D data are generally not annotated in full 
3D, but rather partially annotated by selecting and contouring only a few sparse 2D slices out of the whole dataset7.  
This approach decreases the accuracy of the segmentation in the third dimension, which may be acceptable for 
clinical images, where standardized body positions or anisotropic resolutions reduce the necessity of rotational 
invariance in both algorithms and segmentation. In more generalized segmentation problems encountered in 
biomedical imaging on the other hand, this approach prevents these invariances from being leveraged for data 
augmentation techniques and may reduce performance of corresponding algorithms20. For this reason, the 
annotator manually contoured all slices in three full 3D regions of interest of 512 × 256 × 256 voxels in size (D4 
in Fig. 1, Fig. 3b).

Filenames (Kidney_2) Data provided Precision Data format

D1

kidney2_D1_projections_height1.ome.tiff
kidney2_D1_projections_height2.ome.tiff
kidney2_D1_projections_height3.ome.tiff
kidney2_D1_projections_height4.ome.tiff
kidney2_D1_projections_height5.ome.tiff
kidney2_D1_projections_height6.ome.tiff

X-ray radiographs
Grayscale, 
16-bit 
unsigned 
integer

OME-TIFF (.tif)
In attachment: ESRF 
data format (.edf, raw 
binary with 1024 byte 
header describing 
image dimensions)

D2

kidney2_D2_reco_height1.ome.tiff
kidney2_D2_reco_height2.ome.tiff
kidney2_D2_reco_height3.ome.tiff
kidney2_D2_reco_height4.ome.tiff
kidney2_D2_reco_height5.ome.tiff
kidney2_D2_reco_height6.ome.tiff

Paganin filtered, 
reconstructed 3D 
volume

Grayscale, 
32-bit 
floating 
point

OME-TIFF (.tif)

D3 kidney2_D3_inpainted.ome.tiff Artifact-corrected, 
inpainted 3D volume

Grayscale, 
32-bit 
floating 
point

OME-TIFF (.tif)

D4

kidney2_D4_h3_glomeruli_roi1_annotation.ome.tiff
kidney2_D4_h3_glomeruli_roi1_raw_abs.ome.tiff
kidney2_D4_h3_glomeruli_roi1_raw_pag.ome.tiff
kidney2_D4_h4_glomeruli_roi2_annotation.ome.tiff
kidney2_D4_h4_glomeruli_roi2_raw_abs.ome.tiff
kidney2_D4_h4_glomeruli_roi2_raw_pag.ome.tiff
kidney2_D4_h5_glomeruli_roi3_annotation.ome.tiff
kidney2_D4_h5_glomeruli_roi3_raw_abs.ome.tiff
kidney2_D4_h5_glomeruli_roi3_raw_pag.ome.tiff

Glomeruli annotation, 
3 regions of interests 
(512 × 256 × 256)

Binary, 
8-bit integer OME-TIFF (.tif)

D5 kidney2_D5_blood_vessels.ome.tiff Blood vessel segment Binary, 
8-bit integer OME-TIFF (.tif)

D5b kidney2_D5b_blood_vessels_defatted.ome.tiff Defatted blood vessel 
segment

Binary, 
8-bit integer OME-TIFF (.tif)

D6 kidney2_D6_tubules.ome.tiff Tubule segment Binary, 
8-bit integer OME-TIFF (.tiff)

D7

kidney2_D7_glomgallery_00.ome.tiff
kidney2_D7_glomgallery_01.ome.tiff
kidney2_D7_glomgallery_02.ome.tiff
kidney2_D7_glomgallery_03.ome.tiff
kidney2_D7_glomgallery_04.ome.tiff
kidney2_D7_glomgallery_05.ome.tiff
kidney2_D7_glomgallery_06.ome.tiff
kidney2_D7_glomgallery_07.ome.tiff
kidney2_D7_glomgallery_08.ome.tiff
kidney2_D7_glomgallery_09.ome.tiff
kidney2_D7_glomgallery_10.ome.tiff
kidney2_D7_glomgallery_11.ome.tiff

Gallery of visualized 
glomeruli

RGB, 8-bit 
integer per 
channel

OME-TIFF (.tiff)

D8 kidney2_D8_glomeruli_segment.ome.tiff Glomeruli segment Binary, 
8-bit integer OME-TIFF (.tiff)

D9

kidney2_D9_h2_fat_roi1_annotation.ome.tiff
kidney2_D9_h2_fat_roi1_raw_abs.ome.tiff
kidney2_D9_h2_fat_roi1_raw_pag.ome.tiff
kidney2_D9_h2_fat_roi2_annotation.ome.tiff
kidney2_D9_h2_fat_roi2_raw_abs.ome.tiff
kidney2_D9_h2_fat_roi2_raw_pag.ome.tiff
kidney2_D9_h4_fat_roi3_annotation.ome.tiff
kidney2_D9_h4_fat_roi3_raw_abs.ome.tiff
kidney2_D9_h4_fat_roi3_raw_pag.ome.tiff

Extrarenal fat 
annotation, 3 
regions of interests 
(512 × 256 × 256)

Binary, 
8-bit integer OME-TIFF (.tiff)

Table 1.  List of filenames, data contents, data types, bit depths and data formats contained within the HR-
Kidney dataset available at the Image Data Resource (IDR) repository. Filenames are indicated for "Kidney_2", 
which is the only dataset for which manual annotation data (D4, D9) and defatted blood vessel segment (D5b) 
are available.
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Identification of all individual glomeruli.  Combining these manual training data with the scattering 
transform approach, we were able to identify 10 031, 11 238 and 12 460 glomeruli, respectively, in the three 
kidney datasets. Each glomerulus was 3D visualized in a gallery (Fig. 4b), viewed by a single domain expert and 
classified by its shape as false positive, true positive with shape distortion, or true positive without shape distor-
tion. Only 15, 4 and 4 glomeruli, respectively, were identified as false positives by the rater, and were typically the 
result of poor contrast-to-noise in the specific region of the underlying raw images. Such localized areas of poor 
contrast appear to be caused by limited diffusion of the radiopaque 1,3-diiodobenzene from the vascular cast into 
the surrounding tissue, increasing background gray values (Fig. 3c). False negatives were estimated to be approx-
imately 2603, 2306 and 1420 using unbiased stereological counting on selected virtual sections, corresponding to 
miss rates of 20%, 17% and 10%, respectively. It should be noted that both the manual segmentation of training 
data and validation were performed by the same, single annotator, meaning that annotator-specific bias cannot 

Fig. 2  Computer graphics renderings of the vascular and tubular structure of a mouse kidney. (a) Volume 
rendering of a Paganin-filtered kidney dataset (D2), clipped for visibility. Red colors represent higher intensity. 
Only the higher intensity values, which are due to the contrast agent in larger blood vessels and perirenal fat, are 
shown. (b) Opaque rendering of the thickness transform of the defatted blood vessel binary mask (D2b). Colors 
correspond to largest inscribed sphere radius. (c) Surface rendering of the post-processed segmented vascular 
(red) and tubular (green) lumina in the cortex and inner medulla. (d) Surface rendering of the segmented 
tubular lumina only (D6). (e) Magnified view of the region highlighted by the yellow square in a. Three 
juxtamedullary glomeruli are visible in the right part of the image (white arrows). (f) Magnified view of the 
region highlighted by the yellow square in b. Three cortical glomeruli are visible in the bottom half of the image 
(white arrows). Height of the kidney: 10 mm.
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be excluded. On the other hand, the lack of inter-rater variability removes a source of label noise, which may be 
beneficial in some applications, such as allowing for a higher performance ceiling in benchmarking21.

The binary masks containing these glomeruli represent the supervised and validated training dataset (D8 in Fig. 1)  
and are available in the repository, along with the visualizations and expert classifications. Morphometric anal-
ysis was employed to separate individual glomeruli within clusters in which they appeared fused due to shared 
vessels (Fig. 4c).

Fig. 3  Local views of the reconstructed 3D volume prior to artefact correction (D2). (a) A single virtual section 
of one of the regions of interest selected for manual contouring. Glomerular blood vessels feature the same gray 
values and size scales as other blood vessels in the kidney and differ only in their morphology. A prominent 
ring artefact can be observed touching the top glomerulus. Scale bar: 100 µm (b) Manual annotation (D4) of 
glomeruli overlayed in blue over raw data. (c) Different region of interest containing glomeruli identified by 
machine learning (D8) overlayed in orange over raw data, as well as false negatives denoted by red arrows. 
The majority of missed glomeruli are in similar regions of poor contrast-to-noise, which are characterized by 
elevated tissue background intensity. These are likely caused by limited diffusion of 1,3-diiodobenzene from the 
cast into surrounding tissue. The few false positives identified are also located mainly in such regions.

Fig. 4  Computer generated images of glomeruli. (a) All identified glomeruli (D8) of one kidney are shown in 
cyan in their original spatial location. Large pre-glomerular vessels are rendered in magenta, for orientation.  
(b) Excerpt from the gallery of volume-rendered glomeruli, exhibiting a selection of different glomerulus sizes 
and shapes. Each glomerulus or cluster of glomeruli was assigned an identification number and viewed by an 
expert. (c) Results of the morphometric analysis to separate clustered glomeruli.

https://doi.org/10.1038/s41597-023-02407-5
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Methods
Materials list, in-depth surgery guide and more detailed description of the data processing are provided in the 
Supplementary Information.

Mouse husbandry.  C57BL/6 J mice were purchased from Janvier Labs (Le Genest-Saint-Isle, France) 
and kept in individually ventilated cages with ad libitum access to water and standard diet (Kliba Nafag 3436, 
Kaiseraugst, Switzerland) in 12 h light/dark cycles. Dataset 1 derives from the left kidney of a male mouse,  
15 weeks of age with a body weight of 28.0 g. Dataset 2 is the right kidney of the same mouse. Dataset 3 derives 
from the right kidney of a female mouse, 15 weeks of age with a body weight of 22.5 g. All animal experiments 
were approved by the cantonal veterinary office of Zurich, Switzerland, in accordance with the Swiss federal ani-
mal welfare regulations (license numbers ZH177/13 and ZH233/15).

Perfusion surgery.  Mice were anaesthetized with ketamine/xylazine. A blunted 21 G butterfly needle was 
inserted retrogradely into the abdominal aorta and fixed with a ligation (Figures 6, 7)22. The abdominal aorta and 
superior mesenteric artery above the renal arteries were ligated, the vena cava opened as an outlet and the kidneys 
were flushed with 10 ml, 37 °C phosphate-buffered saline (PBS) to remove the blood, then fixed with 50 ml 37 °C 
4% paraformaldehyde in PBS (PFA) solution at 150 mmHg hydrostatic pressure.

Vascular casting.  2.4 g of 1,3-diiodobenzene (Sigma-Aldrich, Schnelldorf, Germany) were dissolved in 7.5 g 
of 2-butanone (Sigma-Aldrich) and mixed with 7.5 g PU4ii resin (vasQtec, Zurich, Switzerland) and 1.3 g PU4ii 
hardener. The mixture was filtered through a paper filter and degassed extensively in a vacuum chamber to min-
imize bubble formation during polymerization, and perfused at a constant pressure of no more than 200 mmHg 
until the resin mixture solidified. Kidneys were excised and stored in 15 ml 4% PFA. For scanning, they were 
embedded in 2% agar in PBS in 0.5 ml polypropylene centrifugation tubes. Kidneys were quality-checked with 
a nanotom® m (phoenix|x-ray, GE Sensing & Inspection Technologies GmbH, Wunstorf, Germany). Samples 
showing insufficient perfusion or bleeding of resin into the renal capsule or sinuses were excluded.

ESRF ID19 micro-CT measurements.  Ten kidneys were scanned at the ID19 tomography beamline of the 
European Synchrotron Radiation Facility (ESRF, Grenoble, France) using pink beam with a mean photon energy 
of 19 keV. Radiographs were recorded at a sample-detector distance of 28 cm with a 100 µm Ce:LuAG scintillator, 
4 × magnification lens and a pco.edge 5.5 camera with a 2560 × 2160 pixel array and 6.5 µm pixel size, resulting in 
an effective pixel size of 1.625 µm. Radiographs were acquired with a half-acquisition scheme23 in order to extend 
the field of view to 8 mm. Six height steps were recorded for each kidney, with half of the vertical field of view 
overlapping between each height step, resulting in fully redundant acquisition of the inner height steps.

5125 radiographs were recorded for each height step with 0.1 s exposure time, resulting in a scan time of 1 h 
for a whole kidney. 100 flat-field images were taken before and after each height step for flat-field correction. 
Images were reconstructed using the beamline’s in-house PyHST2 software, using a Paganin-filter with a low 
δ/β ratio of 50 to limit loss in resolution and appearance of gradients close to large vessels18,24,25. Registration for 
stitching two half-acquisition radiographs to the full field of view was performed manually with 1 pixel accuracy. 
Data size for the reconstructed datasets was 1158 GB per kidney.

Image stitching and inpainting.  Outliers in intensity in the recorded flat fields were segmented by noise 
reduction with 2D continuous curvelets, followed by thresholding to calculate radius and coordinates of the 
ring artefacts. The redundant acquisition of the central four height steps allowed us to replace corrupted data 
with a weighted average during stitching. The signals of the individual slices were zeroed in the presence of the 
rings, summed up and normalized by counting the number of uncorrupted signals. In the outer slices, where no 
redundant data was available, and in locations where rings coincided in both height steps, we employed a dis-
crete cosine transform-based inpainting technique with a simple iterative approach, where we picked smoothing 
kernels progressively smaller in size and reconstructed the signal in the target areas by smoothing the signal 
everywhere at each iteration. The smoothed signal in the target areas was then combined with the original signal 
elsewhere to form a new image. In the next iteration, in turn, the new image was then smoothed to rewrite the 
signal at the target regions. The final inpainted signal exhibits multiple scales since different kernel widths are 
considered at different iterations.

The alignment for stitching the six stacks was determined by carrying out manual 3D registration and double 
checking against pairwise stack-stack phase-correlation analysis26. The stitching process reduced the dataset 
dimensions per kidney to 4608 × 4608 × 7168 pixels, totaling 567 GB.

Semi-automatic segmentation of the vascular and tubular trees.  We performed image enhance-
ment based on 3D discretized continuous curvelets27, in a similar fashion as Starck et al.28, but with second gener-
ation curvelets (i.e., no Radon transform) in 3D. The enhancement was carried out globally by leveraging the Fast 
Fourier Transform with MPI-FFTW29, considering about 100 curvelets. The “wedges” (curvelets in the spectrum)  
have a conical shape and cover the unit sphere in an approximately uniform fashion. For a given curvelet, a 
per-pixel coefficient is obtained by computing an inverse Fourier transform of its wedge and the image spectrum. 
We then truncated these coefficients in the image domain against a hard threshold, and forward-transformed the 
curvelet again into the Fourier space, modulated the curvelets with the truncated coefficients and superposed 
them. As a result, the pixel intensities were compressed to a substantially smaller range of values, thus helping to 
avoid over- and under-segmentation of large and small vessels, respectively. A threshold-based segmentation fol-
lowed the image enhancement. The enhancement parameters and threshold were manually chosen by examining 
six randomly chosen regions of interest. Spurious islands were removed by 26-connected component analysis, 
and cavities were removed by 6-connected component analysis.
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The bulk of the processing workload, required to transform data into an actionable training set, was carried 
out at the Zeus cluster of the Pawsey supercomputing centre. Zeus consisted of hundreds of computing nodes 
featuring Intel Xeon Phi (Knights Landing) many-core CPUs, together with 96 GB of “special” high-bandwidth 
memory (HBM/MCDRAM), as well as 128 GB of conventional DDR4 RAM. The final training and assessments 
were carried out at the Euler VI cluster of ETH Zurich, with two-socket nodes featuring AMD EPYC 7742 
(Rome) CPUs and 512 GB of DDR4 RAM.

Identification of glomeruli via scattering transform.  A machine learning-based approach relying on 
invariant scattering convolution networks was employed to segment the glomeruli and remove perirenal fat from 
the blood vessel segment19. For the glomerular training data, three selected regions of interest of 512 × 256 × 256 
voxels in size were selected from the cortical region of one kidney (dataset 2) and segmented by a single annotator 
by fully manual contouring in all slices. For the fat, manual work was reduced by providing an initial semiauto-
matic segmentation, which the manual annotation then corrected. The training data were supplemented by addi-
tional regions of interest that contained no glomeruli or fat at all, and thus did not require manual annotation.  
The manual annotations were then used to train a hybrid algorithm that relied on a 3D scattering transform con-
volutional network topped with a dense neural network. The scattering transform relied upon ad-hoc designed 
3D kernels (Morlet’s wavelet with different sizes and orientations) that uniformly covered all directions at differ-
ent scales. In the scattering convolutional network, filter nonlinearities were obtained by taking the magnitude of 
the filter responses and convolving them again with the kernels in a cascading fashion. These nonlinearities are 
designed to be robust against small Lipschitz-continuous deformations of the image19.

In contrast to our curvelet-based image enhancement approach, we decomposed the image into cubic tiles, 
then applied a windowed (thus local) Fourier transform on the tiles by considering regions about twice their size 
around them. While it would have been possible to use a convolutional network based upon a global scattering 
transform, this would have produced a very large number of features that would have had to be consumed at 
once, leading to an intermediate footprint in the petabyte-scale, exceeding the available memory of the cluster.

The scattering transform convolutional network produced a stack of a few hundred scalar feature maps 
per pixel. If considered as a “fiber bundle”30,31, the feature map stack is equivariant under the symmetry group 
of rotations (i.e., the stack is a regular representation of the 3D rotation group SO(3)). This property can be 
exploited by further processing the feature maps with a dense neural network with increased parameter sharing 
across the hidden layers, making the output layer-invariant to rotations.

Data Records
The dataset is available at the Image Data Resource (IDR) repository at https://doi.org/10.17867/10000188 under 
accession number idr014732. As per the repository’s guidelines, all data is available in the OME-TIFF format, 
which features the ability to load downsampled versions of the image data, as well as viewing them on the repos-
itory’s online image viewer. Raw X-ray radiographs (D1) are further provided as an attachment in the original 
ESRF data format as well, which are raw binary image files with a 1024 bytes header describing the necessary 
metadata to open the images. All radiographs provided in this format feature image dimensions of 2560 × 2160 
pixels, 16-bit unsigned integer bit depth and little-endian byte order.

File structure.  The HR-Kidney datasets deposited in IDR are collected under a main folder named 
“idr0147-kuo-kidney3d”. The datasets of the three kidneys are collected in three subfolders “Kidney_1”, 
“Kidney_2” and “Kidney_3”. The filenames of all data provided in the folder “Kidney_2” are provided in Table 1. 
Datasets of the other kidneys follow the same naming scheme, differing only in the kidney number.

Raw X-ray radiographs (D1) are provided both in the OME-TIFF-format, and in the original ESRF data 
format (.edf) as attachments on IDR. Manual annotation data (D4, D9) and defatted blood vessel segment 
(D5b) are only available for “Kidney_2”. Annotation data are provided along with the excerpts (D4) from the 
reconstructed, Paganin-filtered 3D volumes (D2), denoted with a filename ending with “_pag”. Excerpts of the 
ROIs of the equivalent 3D volumes reconstructed without Paganin-filtering (“absorption images”) are provided 
with a filename ending with “_abs”, as they formed the basis of the manual annotation. They were not employed 
for training and are only provided for documentation. As the two versions are reconstructions of the same data-
set, the manual annotations are equally valid for both. Coordinates and dimensions for extracting the ROIs are 
provided as metadata on IDR.

Technical Validation
Validation of glomeruli by a domain expert.  To reduce the workload to the level required to make 
validation of each glomerulus feasible, a volumetric visualization of the overlap between the blood vessel mask 
and the glomerular mask was generated for rapid evaluation of easy to recognize glomeruli or artefacts. In a first 
round, glomeruli were classified by their shape into three categories: 1. certain true positive with shape distortion, 
2. certain true positive without shape distortion and 3. uncertain. Candidates of the third category, which consti-
tuted about 3 to 5% of all machine-identified glomeruli, were then reviewed in a second round as an overlay over 
the original raw data on a slice-by-slice basis. These candidates were then assigned as false positives or as certain 
glomeruli of categories 1 or 2.

The numbers of false negative rates were assessed using stereological counting, to ensure proper unbiased 
sampling33. Four pairs of virtual sections were selected at equidistant intervals in one half of each kidney. The 
distance between the pairs was 31 slices or 50 µm. To extrapolate the number of counted glomeruli to the whole 
kidney, both the considered volume and the volume of the entire kidney were calculated based on a mask 
derived from morphological closing on the vascular segmentation (D5).
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The vascular and tubular structures do not form individual, countable units. Therefore, the accuracy of their 
semi-automatic segmentations (D5, D6) cannot be assessed on a similar per-object-basis. An assessment would 
have to be performed on each individual voxel instead. This would require voxel-accurate ground truth data 
with higher precision than can be created, with reasonable workload, using manual annotation of the highly 
intricate and convoluted vascular and tubular trees. Accordingly, these segmentations have not been validated to 
be used as ground truth for machine-learning or benchmarking datasets, but are rather supplied as examples of 
segmentations for other purposes, such as testing image processing, segmentation or vascular analysis methods 
at the terabyte scale.

Code availability
The HR-Kidney dataset is freely available for download at the Image Data Resource under accession number 
idr0147: https://doi.org/10.17867/10000188.
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