
Ultrasound-based motion
modelling is a feasible approach to

estimating lung motion
variabilities and their effects on
proton dose distributions.
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Introduction
• Motion mitigation is crucial for
scanned proton therapy of mobile
tumours to prevent

– geometrical target miss,
– interplay effects, and thus
– under- and overdosage.

• We present a patient-specific respi-
ratory lung motion model based on
hybrid 4D MRI and 2D abdominal
ultrasound (US) imaging.

Methods
• Simulation study based on 10 com-

bined CT/4D MRI data sets using
– respiratory motion character-

istics of 5 healthy volunteers,
– fused with the CT data of 2

lung cancer patients.
• Gaussian process regression is used

for estimating full lung motion in-
formation given a US image of the
liver and the diaphragm.

Results
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Figure 5: Example sagittal slices to illustrate the spatial error distribution, averaged

over time. Top row: CT geometry 1, bottom row: CT geometry 2.

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5
0

2

4

6

8

10

E
st
im

at
io
n
er
ro
r
(m

m
)

(a) CT geometry 1

Motion 1 Motion 2 Motion 3 Motion 4 Motion 5
0

2

4

6

8

10
50th
95th

(b) CT geometry 2

Figure 6: Motion estimation errors for all geometries and motions. The boxplots indicate

the error percentiles of all voxels within the VOIgeom. The whiskers include all values

within 1.5 IQR.

the estimation error is up to 4 times higher for subset 1 when compared to subset 4.

The performance of the motion model is similar when it was trained on the complete

training set or subset 4 only.

3.3. Dosimetric error

The influence of the estimation error on the dose distributions is shown in figure 8. The

absolute dose difference volume histograms within the CTV and the VOIdose are plotted

for each 4DCT(MRI) data set. The solid lines display the median values, whereas the

Fig. 1 Geometrical analysis: Error percentiles of voxels within the VOI.
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(a) CT geometry 1, CTV

0 5 10 15 20 25
0

20

40

60

80

100

Absolute dose difference (%)

V
ol

u
m

e
(%

)

Motion 1
Motion 2
Motion 3
Motion 4
Motion 5

(b) CT geometry 2, CTV
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(c) CT geometry 1, VOIdose
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(d) CT geometry 2, VOIdose

Figure 8: Absolute dose difference histograms for all geometries and motion cases,

evaluated in the CTV and in VOIdose.

reconstructions, the DVFs tend to be smoother and therefore potentially less prone to

estimation errors. Additionally, the higher temporal resolution and larger training data

sets available for this method may further influence the estimation accuracy positively.

With 50th and 95th percentiles estimation errors in the range of 2 mm and 4 mm,

respectively, for all geometry/motion cases, the presented respiratory motion model

achieves clinically relevant results. It was also demonstrated that higher geometrical

errors do not coincide with higher dosimetric errors. This suggests that the presented

analysis is robust against the chosen 4DMRI method and, therefore, allows for viable

conclusions regarding dosimetric errors. The dosimetric errors found in this study are

in a clinically acceptable range, especially because for treatment, a motion mitigation

technique such as rescanning can be combined. This has been shown to additionally

reduce dosimetric uncertainties due to motion (Krieger et al. 2018, Zhang et al. 2014).

Fig. 2 Dosimetric analysis: Dose difference volume histograms.

Conclusion
This approach offers the possibility to take into account motion variabilities in 4D
treatment planning, retrospective dose reconstruction, and online beam tracking.

Additional figures

Fig. 3 CT geometries and beam directions.
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(c) CT geometry 1
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Figure 2: Overview over the motion amplitudes in each motion direction (a), (b) and

motion periods (c), (d). The boxplots include all breathing cycles in the respective

data set. The whiskers extend to the most extreme values still within 1.5 time the

inter-quartile range (IQR). SI: superior-inferior, LR: left-right, AP: anterior-posterior.
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Figure 3: Schematic overview of the motion model.

kS ∈ Rv×v (Williams & Rasmussen 2006):

p(β∗|α∗,S) = GP(µS, kS). (3)

Let K ∈ RvM×vM represent a matrix of the covariance k(αi,αj) evaluated for all input

training point pairs, (αi,αj) with i, j ∈ {1, . . . ,M}. Similarly, let K∗ ∈ RvM×v denote

the matrix of the covariance between the test point α∗ and the M training points,

k(α∗,αi) with i ∈ {1, . . . ,M}. Finally, the output training points are collected in a

vector b =
[
βT

1 . . .β
T
M

]T ∈ RvM . The mean and covariance of the posterior can now be

Fig. 4 Respiratory motion characteristics.
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Fig. 5 Respiratory motion model.
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Figure 5: Example sagittal slices to illustrate the spatial error distribution, averaged

over time. Top row: CT geometry 1, bottom row: CT geometry 2.
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Figure 6: Motion estimation errors for all geometries and motions. The boxplots indicate

the error percentiles of all voxels within the VOIgeom. The whiskers include all values

within 1.5 IQR.

the estimation error is up to 4 times higher for subset 1 when compared to subset 4.

The performance of the motion model is similar when it was trained on the complete

training set or subset 4 only.

3.3. Dosimetric error

The influence of the estimation error on the dose distributions is shown in figure 8. The

absolute dose difference volume histograms within the CTV and the VOIdose are plotted

for each 4DCT(MRI) data set. The solid lines display the median values, whereas the

Fig. 6 Geometrical error, averaged over time.
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(a) CT geometry 1, motion 5
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Figure 7: Drift analysis for motion 5 and different training subsets. The boxplots

indicate the error percentiles of all voxels within the VOIgeom. The whiskers include all

values within 1.5 IQR.

shaded bands include all possible starting phases (52 – 132 per two-field plan). It is

seen that for CT geometry 2, the dose differences are somewhat lower and the spread

due to different starting phases is less pronounced than for CT geometry 1. Motion 3

presents the highest dose differences, whereas the other motions present similar dose

differences. When looking at the volumes with a difference of more than 5 % or 10 %

(table 2), it is again seen that motion 3 leads to the highest percentages compared to

other motion patterns. Again, geometry 2 shows lower values than geometry 1, except

for the Vdiff>10 % of motion 4. All Vdiff>5 % values are below 44 %, and even below 30 %

if motion 3 is not considered. Similarly, the Vdiff>10 % percentages are below 17 % for all

cases and below 9 % when excluding motion motion 3.

4. Discussion

In this work, we have investigated the effects of respiratory motion estimation on the

dose distribution in PBS proton therapy of lung tumours. Dense motion information in

the lungs was estimated based on abdominal US imaging and patient-specific respiratory

motion modelling. Time-resolved 4DCT(MRI) were employed to simulate motion

variabilities over a comprehensive time duration of up to 11 min using two different

4DMRI approaches. To take these motion variabilities into account for treatment

planning, a recently presented probabilistic ITV definition was applied (Krieger

et al. 2020) and two-field SFUD plans were optimised on composite planning CTs.

Good geometrical and dosimetric agreement were achieved, however, with a

tendency of higher geometrical errors for the 4DMRI based on slice stacking when

compared to the patch registration approach. Due to the reconstruction properties

of the latter method, which is based on DIR of low spatial resolution core patch

Fig. 7 Drift analysis.
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