

Respiratory Motion Modelling using cGANs

Alina Giger^{1,2}, Robin Sandkühler^{1,2}, Christoph Jud^{1,2}, Grzegorz Bauman^{1,3}, Oliver Bieri^{1,3}, Rares Salomir⁴ and Philippe C. Cattin^{1,2}

¹Department of Biomedical Engineering, University of Basel
²Center for Medical Image Analysis & Navigation, University of Basel
³Division of Radiological Physics, Department of Radiology, University Hospital Basel
⁴Image Guided Interventions Laboratory, University of Geneva

BACKGROUND & CONTRIBUTION

Respiratory motion models in radiotherapy are considered as one possible approach for **tracking mobile tumours** with the goal of ensuring the best combination of target coverage and dose conformation. We present a motion modelling framework which is:

• patient-specific,

Fig. 1: Schematics of the motion modelling pipeline.

- relying on 2D abdominal ultrasound (US) images as surrogates, and hence on internal motion data,
- capable of predicting **dense volume information** within reasonable computation time.

Method

Goal For every time t_j we aim to predict a complete MR volume given temporally corresponding abdominal 2D US images.

1) Data acquisition and image registration Simultaneous US/MR imaging is performed based on an interleaved MR acquisition scheme [1] where data and navigator slices were acquired alternatingly. Using deformable image registration [2], 2D deformation fields of the navigator slices are extracted.

(2) Training of the neural network We train a conditional generative adversarial network (cGAN) as proposed in [3] where

RESULTS

The proposed approach is demonstrated based on 3 hybrid US/MR datasets of 2 healthy volunteers (acquisition duration: $9.5 \,\mathrm{min}$ each).

Training details The datasets were split into $N_{train} = 480$ training images and $N_{test} = \{224, 100, 110\}$ test images for datasets $\{1, 2, 3\}$, respectively. We applied the U-Net based generator architecture and the convolutional PatchGAN classifier as discriminator.

Validation For each consecutive navigator pair of the test set a complete MR volume was reconstructed using the data slices of the training set as possible candidates.

- generator $G: \{x, z\} \mapsto y$ learns the mapping from US images x and a random noise vector z to the deformation field y, and
- discriminator D aims to classify real and synthesised image pairs.

We introduce gradient information by feeding two consective US images as inputs to the cGAN: given the US images at times t_{i-2} and t_{i-1} , we aim to predict the deformation field at t_{i+1} .

(3) Real-time prediction during dose delivery At time t_{j-1} , online US images are fed to the trained cGAN generating the deformation field for t_{j+1} . Following the slice stacking approach in [1], MR data slices acquired in step (1) are grouped into a complete volume predicting the state of the thorax at t_j .

CONCLUSION

A first proof-of-concept study demonstrated the feasibility of the proposed approach. Future work will be devoted towards the development of effective data augmentation strategies and must include a thorough investigation of the robustness of cGANs within the context of motion modelling. **RDF** Reference stacking method using the deformation fields computed on the actually recorded MR navigator slices

 ${\bf GDF}$ Proposed approach based on ${\bf g}{\bf e}{\bf nerated}$ ${\bf d}{\bf e}{\bf f}{\bf ormation}$ ${\bf f}{\bf i}{\bf e}{\bf l}{\bf d}{\bf s}$

Fig. 2: Slice selection illustrated as joint histogram for reference and generated deformation fields, respectively. Left to right: datasets 1 to 3.

References & Acknowledgements

- [1] von Siebenthal et al., "4D MR imaging of respiratory organ motion and its variability." *Physics in Medicine and Biology*, 2007.
- [2] Sandkühler et al., "Adaptive Graph Diffusion Regularisation for Discontinuity Preserving Image Registration." 8th International Workshop on Biomedical Image Registration, 2018.
- [3] Isola et al., "Image-to-Image Translation with Conditional Adversarial Networks." CVPR, 2017.

This work was supported by the Swiss National Science Foundation, SNSF (project number: $320030_{-}163330/1$).

Fig. 3: Qualitative and quantitative results. (a) Sample motion field of dataset 2 with reference (green) and predicted (yellow) deformations, and (b) error distribution of mean deformation field.