Ultrasound-based motion management is a promising approach to cope with inter-fractional motions in proton therapy.

Inter-fractional Respiratory Motion Modelling from Abdominal Ultrasound: A Feasibility Study

Alina Giger^{1,2}, Christoph Jud^{1,2}, Damien Nguyen^{2,3}, Miriam Krieger^{4,5}, Ye Zhang⁴, Antony J. Lomax^{4,5}, Oliver Bieri^{2,3}, Rares Salomir⁶, and Philippe C. Cattin^{1,2}

Introduction

- Motion management is crucial for proton therapy of tumours prone to respiratory movement.
- We present an inter-fractional motion management pipeline for the lungs based on abdominal ultrasound (US).

Methods

- Hybrid US/MR acquisitions of 5 healthy volunteers; subject repositioning in 2 cases
- Time-resolved 4D MRI
- Low-dimensional respiratory motion surrogate using PCA
- Autoregressive model for time series forecasting (p=5, n=2)
- Cubic polynomial regression model for motion prediction

Results

• The overall mean prediction error is 2.9 mm and 3.4 mm after repositioning.

Discussion

- Motion prediction remains challenging if the respiratory motion varies substantially between two fractions.
- Further work is needed to investigate the effect of dense motion prediction on treatment plan adaptations and dose distribution in proton therapy.

Additional figures

 $^1\mathrm{Center}$ for medical Image Analysis & Navigation,University of Basel, Switzerland ²Department of Biomedical Engineering, University of Basel, Switzerland ³Department of Radiology, Division of Radiological Physics, University Hospital Basel, Switzerland ⁴Center for Proton Therapy, Paul Scherrer Institute (PSI), Switzerland ⁵Department of Physics, ETH Zurich, Switzerland ⁶Image Guided Interventions Laboratory, University of Geneva, Switzerland This work was supported by the Swiss National Science Foundation, SNSF (project number: 320030_163330/1) and the NVIDIA GPU Grant Program. UniversitätsSpital Zürich

Universitätsspital Basel

