Compressed Sensing on Multi-pinhole Collimator SPECT Camera for Sentinel Lymph Node Biopsy

Carlo Seppi, Uri Nahum, Peter A. von Niederhäusern, Simon Pezold, Michael Rissi, Stephan K. Haerle and Philippe C. Cattin

Center of medical Image Analysis & Navigation (CIAN) Department of Biomedical Engineering, University of Basel

Motivation

Standard procedure for cancer in the head and neck includes a complete surgical removal of the lymph nodes, which is needed in less than 30% of the cases. Finding the exact position of the sentinel lymph nodes will be helpful for less invasive surgical biopsy and exclude regional spread of the cancer.

Material

Using a multi-pinhole collimator [1] to reconstruct the activity map of the radioactive tracer, using a single image of the detector.

- Detector’s resolution is 487×195 pixels of the size $172 \mu m \times 172 \mu m$
- Collimator: Tungsten, $86.9 \text{mm} \times 36 \text{mm} \times 36 \text{mm}$, 24 pinhole compartments

Image Processing

Detector’s image is not sparse:

- Solving linear system would take long & be inaccurate
- Difficult to use geometric properties of the collimator

\Rightarrow Use a pipeline of image processing to get sparsity

Methods

Inverse Problem Let A be an linear operator, which projects an activity map v on the detector d such that $A v = d$.

For a given detector image d^{true} we solve:

$$\min_v ||v||_1 \text{ s.t. } ||A v - d^{\text{true}}||_2 \leq \epsilon$$

using WSPGL1. [4]

Results

Visualization of our experiment with one source:

Visualization of our experiment with two sources:

Visualization of our experiment with three sources:

References