Research questions/goals:The biochemical and molecular mechanisms underlying epistatic phenomena observed in various living organisms are poorly understood. Epistasis, or genetic interactions, refers to functional relationships between genes. It describes the phenotypic effect of perturbing (e.g., knocking down or knocking out) two genes separately versus jointly relative to the unperturbed system. Thus, epistasis is a property of the underlying network of biochemical interactions in the cell. In this project, we use a mathematical framework linking epistatic gene interactions to the redundancy of biological networks. This approach is based on network reliability, an engineering concept that allows for computing the probability of functional network operation under different network perturbations, such as the failure of specific components, which, in a genetic system, correspond to the knock-out or knock-down of specific genes. Using this framework, we want to study how to infer functional constraints in biological networks from observed genetic interactions.